Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels.
نویسندگان
چکیده
OBJECTIVES Mediated by the medial olivocochlear system (MOCS), distortion product otoacoustic emission (DPOAE) levels are reduced by presentation of contralateral acoustic stimuli. Such acoustic signals can also evoke a middle ear muscle reflex (MEMR) that also attenuates recorded DPOAE levels. Our aim is to clearly differentiate these two inhibitory mechanisms and to analyze each separately, perhaps allowing the development of novel tests of hearing function. METHODS DPOAE were recorded in real time from chinchillas with normal auditory brainstem response thresholds and middle ear function. Amplitude reduction and its onset latency caused by contralateral presentation of intermittent narrow-band noise (NBN) were measured. Stapedius and tensor tympani muscle tendons were divided without disturbing the ossicular chain, and DPOAE testing was repeated. RESULTS Peak reduction of (2f1 - f2) DPOAE levels occurred when the center frequency of contralateral NBN approximated the primary tone f2, indicating an f2-frequency-specific response. For a 4.5-kHz centered NBN, DPOAE (f2 = 4.4 kHz) inhibition was 0.1 dB (p < 0.001). This response remained present after tendon division, consistent with an MOCS origin. Low-frequency NBN (center frequency: 0.5 kHz) reduced otoacoustic emission levels (0.1 dB, p < 0.001) across a wide range of DPOAE frequencies. This low-frequency response was abolished by division of the middle ear muscle tendons, clearly indicating MEMR involvement. CONCLUSIONS Following middle ear muscle tendon division, DPOAE inhibition by contralateral stimuli approximating the primary tone f2 persists, whereas responses evoked by lower contralateral frequencies are abolished. This distinguishes the different roles of the MOCS (f2 frequency specific) and MEMR (low frequency only) in contralateral modulation of DPOAE. This analysis helps clarify the pathways involved in an objective test that might have clinical benefit in the testing of neonates.
منابع مشابه
Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway.
Suppression of ipsilateral distortion product otoacoustic emissions (DPOAEs) by contralateral noise is used in humans and animals to assay the strength of sound-evoked negative feedback from the medial olivocochlear (MOC) efferent pathway. However, depending on species and anesthesia, contributions of other feedback systems to the middle or inner ear can cloud the interpretation. Here, contribu...
متن کاملThe middle ear muscle reflex in the diagnosis of cochlear neuropathy.
Cochlear neuropathy, i.e. the loss of auditory nerve fibers (ANFs) without loss of hair cells, may cause hearing deficits without affecting threshold sensitivity, particularly if the subset of ANFs with high thresholds and low spontaneous rates (SRs) is preferentially lost, as appears to be the case in both aging and noise-damaged cochleas. Because low-SR fibers may also be important drivers of...
متن کاملToluene effect on the olivocochlear reflex.
Animal studies have shown that toluene can cause hearing loss and can exacerbate the effects of noise by inhibiting the middle ear acoustic reflex. In this investigation, carried out in Long-Evans rats, the tensor tympani tendon was cutoff and the stapedius muscle was electrocoagulated in one or both middle ears. Rat hearing was evaluated by measuring cubic distortion otoacoustic emissions (2f1...
متن کاملContralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions.
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, ...
متن کاملAging of the medial olivocochlear reflex and associations with speech perception.
The medial olivocochlear reflex (MOCR) modulates cochlear amplifier gain and is thought to facilitate the detection of signals in noise. High-resolution distortion product otoacoustic emissions (DPOAEs) were recorded in teens, young, middle-aged, and elderly adults at moderate levels using primary tones swept from 0.5 to 4 kHz with and without a contralateral acoustic stimulus (CAS) to elicit m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Audiology & neuro-otology
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2014